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DIFFUSION TO A PARTICLE IN A SHEAR GAS FLOW
IN THE CASE OF ARBITRARY KINETICS OF THE SURFACE REACTION

A.D. PCLIANIN

Diffusion to a particle in a shear flow at smaii Peciet and Reynolds numbers is
considered in the case when a chemical reaction, the rate of wnich depends on  the
concentration in an arbitrary manner, takes place at its surface. The heat andmass
transfer in a particle in a translaticnal flow of viscous incompressible fluid ar
small Peclet and Reynolds numbers were studied 11 /i—7/. The diffusicon mode of the
reaction at the particle surface was studied in /1— 3/, and a netercgeneous reaction
of the first, second and arbitrary crder were oonsidered =67, /Y and /77 re-
spectively. The papers /68— 10/ deal with the case of diffusicn meode of reaction at
the particle surface freely suspended in a shear flow.

Using a spherical r 8, iA-coordinate system attached to the particle, we can describe  the
reagent transfer process in the fluid using the following convective diffusicn equation and
poundary conditicnrs:
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Here ¢4 1s the concentration, P is the Peclet number, ¢ 1s the particle radius, I is the dif-
fusion coefficient, { is the characteristic flow rate, } is the Laplace operator, k' 1is the
reaction rate constant and k¥ is the rate of chemical reaction. Here and henceforth the re-
peated indices will denote summaticn.

In the case of an arbitrary shear flow <f an incompressible fluld, the velocity distriba-
tion away from the particle has the form
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We shall assume for definiteness that the dimensicnless cocefficients in (3} and the character-
istic flow rate in (1) can be expressed in terms of rhe olements of the shear coefficianes
matrix G;* as follows:
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Let us investigate the boundary value prcblem {11, 21 using the method of merging asymg-
totic expansions in terms of the small Peclet numbers /l—10/. The Zlow region s divided in-
to two subregions, the inner {1 < r< O(P7'H} and the cuter i (p™'y . r- w) subregion /8—10/. As
usual, a “"conpressed" coordinate p= PYr is introduced “he outor subregion and the solution
is sought in each of the subregions scparately, in the form of the inner and outer expansion.

In the course ¢f constructing an asymptotic solution we use the boundary condition (2) at the

particle surface in the inner region, and bourdary conditie at infinity in rhe outer reglon.

The unknown constants appearing in the sclution can be using  the meriing
Similarly /10/ we can show that in the case ~f a Stickes flow pas:t Lane, 3
tiocn distribution in the outer region O 5 ¢ wiis expressed 1n te: nhe
solution of the oquation MY Gyryafdr, in “be
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Here 2 is a numerical coefficient and @ {s a0 nknown cion determire o the Lsurse N
the problem. A gereral expression for the parameter « i35 given in /9/. 1In partiouliar, 1 the
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case of simple shear (one nondiagonal element of the matrix G;; is equal to unity and the rest

are zero) a = 0.258 /8/.
Using the results of /7,10/ we can show that for the inner expansion in the region {1 <

r< 0 (P~} the following representation holds:
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where ¢ is the root of the equation

—g+ (-9 = (e)

Functions ¢, and ¢, satisfy the equation /10/
Apen = ~r 3 ujry (m=2, 3) (7)

and boundary conditions
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which are obtained by substituting the expression (5) into the boundary conditions (2) at the

particle surface, expanding into series and separating the terms accompanying the like powers
of the small parameter p': Integrating (7) over the surface of the sphere § of radius r> |
and taking into account the incompressibility of the fluid, we obtain, in accordance with /10/

1 d d 1
T /mr?S“i"idS:O (9)
S
1 z;
= lmrlS"ld‘g' no= (m=2,3)
5
The general solution of (9) has the form
Cepy = Ay bt (10)
Integration of the boundary conditions (8) over § at r=1, yields two linear algebraic equa-
g Y Y

tions for determining the unknown coefficients e, and &,. Integration of (5) with (1l0O) taken
intc account, and subsequent merging with the integral of the ocuter solution (4), yields def-
icient (linear) algebraic relations for determining the coefficients a, and ly in (10) and the
unknown function ® appearing in the expression (4). Let us write the final expression for

the mean Sherwood number
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The coefficients ¢, 9« and o, are defined in the formula (5) and (6).
In the case of the linear kinetics of the surface reaction f(r)= kz, the formula (11)
simplifies and assumes the form

Sh=q(1 —agP )= o (P %), ¢ =k~ 1) (12)

When k —oo (g—1), the expression (12) becomes identical with the result of /10/. Using direct
substitution we can show that (1l1) can be obtained by sclving the following algebraic (trans-
cendental) equation
Sh =/ (1 —Sh=h) (13)

where (Sh, is the Sherwood number in the case of a shear flow past a sphere for a diffusive
reaction mode /10/, which corresponds to the value 4 =1 (k::00) in (12). It should be noted
that the equation /13/ yields a correct result also in the case of a translational Stokes flow
past a plane. We can show this by substituting into (13) the expression for =h_ obtainedin
/1/, and solving the resulting equation for Sh. This procedure yields the result of /7/.

It can be shown that in the case of an arbitrary flow of an incompressible fluid past a
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spherical particle (a drop), equation (14) yields a correct result for at least <£fjirst two
terms of the asymptotic expansion of the mean Sherwood number £h in terms of the small Peclet
number (Sh, corresponds to the diffusipa reaction mode). The assertion can be proved as
follows. At small Peclet numbers the zero term of .the inner expansion is independent of the
type of flow past the sphere and is determined by the expression (5) with P =0. This leads

to the appearance of a supplementary (compared with the diffusion reaction mode) multiplier

¢ in the principal term of the outer expansion. Moreover, the boundary condition at the
sphere surface coincides, for the first term of the inner expansion ¢, with the first bound-
ary condition of (8) when w,= 0, and the expression for ¢, is either given by the homogeneous

Laplace equation, or it coincides with equation (7). In all cases the equation implies that
the representation (10) holds for <>, The boundary condition for r =1 yieldsasingle linear
equation for determining the coefficients a; and b, and the second necessary relation is

obtained from the condition of merger with the principal term of the outer expansion. These
equations together yield a and 4,. Comparison of the two-term expansion obtained in this
manner for the mean Sherwood number shows, that Sh coincides, with the required accuracy,
with the root of the equation (13}.

It can be shown that in the case of a particle of arbitrary form freely suspended in a
shear flow, the following formula for the mean Sherwood number holds for the linear kinetics
of the surface reaction:

Sh/Shy = 1 -+ @ ShoP' 7 =+ a® Sh?P + O (P'9) (14)

Here the mean Sherwood number Sh, corresponds to the mass transfer between the reacting part-
icle with j(x) =&z, and the stationary medium (i.e. at =0), and the coefficient 2 is
found in accW®rdance with /9/. The formula (l4) is derived in the same manner, as that used
in /10/ in investigating the case of a diffusion reaction mode (# — ) just as the authors of
/6/ generalized /2/ the results of /2/ to the case of a translational flow.

In the case of a solid sphere =hy, = & (k 4- )~ and the formula (14) becomes, with the ac-
curacy of up to O, (12).

The author thanks Iu.P. Gupalo and Iu.S. Riazantsev for valuable assessment.
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